

6. (20%) A symmetric planar waveguide (see figure below) has a core thickness *d* of 3 μ m. Ignoring the dispersion of the waveguide material, we find the indices to be $n_1(\text{core}) = 1.50$ and $n_2(\text{cladding}) = 1.46$.

- (a) (5%) Is the waveguide single-mode or multimoded at $\lambda = 1.5$ and 1.3 μ m?
- (b) (5%) What is the range of wavelength in which this waveguide is single-mode?
- (c) (10%) The guiding mechanism is typically justified by total internal reflection in ray optics, where an incident angle θ (refer to figure) greater than the critical angle $\theta_c = \sin^{-1}(n_2/n_1)$ is required. Does that mean there will be no "cut-off" as long as the optical beam is normally incident ($\theta = 90^\circ$)? Why?

一百零二	_學年度第	−學期	光	電工程	研	究所	_ 博士班研究生資格考試
科目	電磁理論		3	頁第	3	頁	*請在試卷(答案卷)內作答

7. (15 %) An inductor is formed by winding N = 10 turns of a thin conducting wire into a circular loop of radius a = 10 cm. The inductor loop is in the *x*-*y* plane (surface normal along *z*) with its center at the origin, as shown below. In the presence of a uniform magnetic flux density

 $\vec{B} = 0.2(2\hat{a}_y + 3\hat{a}_z)\sin(10^3 t)$ Tesla, where t is in units of second, find

- (a) (5%) the magnetic flux crossing the inductor loop.
- (b) (5%) the electromotive force induced in the inductor loop.
- (c) (5%) the direction of current flow in the inductor loop when an observer looks into the -z direction. (Give an answer of clockwise or counter clockwise direction and provide your reason to reach the answer.)

(make sure you give the correct units for answers (a) & (b))

