	或	Ì.	清	華	大	學	命	題	紙
九十九 ⁴ 科目	學年度第 光電子	5二學與 學一	期 <u>)</u> 共	<u>ド電工</u> 頁	<u>程研究</u> 〔第	昕 頁	博 * <u>請右</u>	「土班研 三試卷(开究生資格考試 答案卷)內作答
 Consider the ABCD matrix: (a) (4%) Explain the physical meaning of each element within the matrix. (b) (3%) Assume you have a simple imaging system, what will be the signature of its corresponding ABCD matrix? 									
 2. (a) (6%) Perform the step-by-step derivation in obtaining the paraxial Helmholtz equation. You need to state clearly the assumptions in each step. (b) (7%) Write down the mathematical expression of the paraboloidal wave. Show it is indeed a solution to the paraxial Helmholtz equation. 									
3. (7%) Consider a thin film of soap with a thickness of 320nm in air under normal illumination by white light. If the film is treated as a planar dielectric slab with $er = 1.77$, surrounded on both sides by air, what is the reflected color? (No credits for answer without explanation and calculation.)									
4. (8%) Please prov represent traveling motion.	vide justif waves. A	fication and for (to expl each of	lain if t the qu	the follo alified	owing expres	math ex sions, p	pressio lease gi	ns (distances are in meters) ve speed and direction of

(a) $f(x,t) = Asin^2(4\pi(t+x))$ (b) $f(x,t) = A(x-t)^2$

5. (15%) Write down the field of a Gaussian beam with beam waist W_0 at wavelength λ . Derive the field distribution of this wave after it propagates a distance L. Rederive the previous question by using Fresnel propagation integral.

6. (10%) The electric field of a Gaussian beam is represented by: $\vec{E}(\vec{r}) \approx E_0 \sin \theta \cdot U(\vec{r}) \hat{\theta}$, where $U(\vec{r})$ is a scalar function satisfying the scalar paraxial wave equation, θ (inclination angle) and

 $\hat{\theta}$ (unit vector) are spherical coordinates quantities defined in the figure below. For the following 5 types of physical problems: (i) interference, (ii) diffraction, (iii) propagation through air, (iv) propagation through waveguides, (v) reflection and refraction at dielectric boundaries, which of them are inadequate to be described by $U(\vec{r})$? Justify your answer.

7. Jone's calculus.

(a) (5%) If the Jones vector of a monochromatic plane wave is: $\begin{bmatrix} 1 \\ -j \end{bmatrix}$

Plot the trajectory and denote the sense of rotation of the corresponding E-field. (b) (5%) What happens if the wave passes through a quarter-wave plate (the x-component leads the y-component by a phase of $\pi/2$ during the propagation)? Justify your answer.

8. A ring cavity consists of three mirrors of R1 = 99%, R2 = 95%, and R3 = 90% in free space. To form the ring cavity, the mirrors are arranged with the following inter-mirror spacing: $l_{12} = 0.5$ m, $l_{23} = 0.4$ m, and $l_{31} = 0.3$ m. The only losses of this cavity are those from the transmission of the mirrors. (a) (5%) What are the round-trip time and the longitudinal mode spacing of this cavity?

(b) (5%) Find the finesse and the longitudinal mode width of this cavity.

(c) (5%) What are the cavity decay rate, the photon lifetime, and the Q factor for l = 1 mm?

9. Plot the photon number distribution, $P(n) = |\langle n|\varphi \rangle|^2$, as a function of photon numbers for the state, $|\varphi \rangle$ (a) (2%) Number state, $|\varphi \rangle = |n = 3\rangle$;

(b) (5%) Coherent state, $|\phi\rangle = |n - 3\rangle$;

(c) (3%) Squeezed Coherent state, $|\phi\rangle = |\xi=3,\alpha=3\rangle$

10. (5%) Name and explain the three basic forms of interactions between photons and atoms.