

1a) (15%) What are the electric flux density \vec{D} , electric field intensity \vec{E} , and voltage difference $V_a \equiv V(-d/2) - V(d/2)$ between the conducting plates? What is the corresponding capacitance C_a ? (*Hint*: Use Gauss's law or the boundary condition $D_{1n} - D_{2n} = \rho_s$. Capacitance is defined as $C \equiv Q/V$.)

1b) (10%) Place a small <u>conducting</u> sphere (with radius $b \ll d$) around (x, z) = (0,0) (Fig. 1b). Are the voltage difference $V_c \equiv V(-d/2) - V(d/2)$ and the capacitance C_c in the presence of a conducting sphere <u>larger or smaller</u> than V_a and C_a calculated in Problem 1a, respectively? Justify your answer. (15 %) Please give an explanation why the guided wave is confined in the rib region, as shown in the following figure. Consider the refractive indices n1 > n2 > n3.

3. (10%) A metallic planar waveguide is shown as follow. What is the frequency range so that only one TE guided mode exists? Suppose the metal is a perfect conductor.

- 4. (30%) The electric field intensity of a harmonic electromagnetic wave in vacuum is given by $\vec{E} = \hat{x}E_0 \cos(\omega t - kz + \phi)$, where \hat{x} is a unit vector along the *x* direction, E_0 is a constant, *t* is a temporal variable, *z* is spatial variable, and ϕ is the starting phase.
 - (1) Prove that the wavelength of this wave is $2\pi/k$. (2%)
 - (2) Prove that the frequency of this wave is $2\pi/\omega$. (2%)
 - (3) Prove that the phase velocity of this wave is ω/k . (2%)
 - (4) Prove that the wavefront of this wave is a plane. (3%)
 - (5) Derive <u>from Maxwell's equations</u> the expression of the magnetic field intensity of this wave.(3%)
 - (6) Suppose the region $z \ge 0$ is filled with a perfect conductor.
 - a. What is the expression of the reflected electric field intensity in the region $z \le 0$? (3%)
 - b. What is the expression of the reflected magnetic field intensity in the region $z \le 0$? (3%)

- c. What is the <u>total</u> time-averaged Poynting vector in the region $z \le 0$? A quick answer from physical arguments is acceptable. (3%)
- (7) Suppose the region $z \ge 0$ is filled with a lossless, nonmagnetic dielectric with a relative permittivity of $\varepsilon_r > 1$.
 - a. What is the expression of the reflected electric field intensity in the region $z \le 0$? (3%)
 - b. What is the expression of the reflected magnetic field intensity in the region $z \le 0$? (3%)
 - c. What is the <u>total</u> time-averaged Poynting vector in the region $z \le 0$? A quick answer from physical arguments is acceptable. (3%)
- 5. (10%) (a) Do the boundary conditions derived for electrostatics and magnetostatics remain valid for time-varying fields? Please explain your reasoning. (b) Please use Maxwell's equations to derive the boundary conditions of \vec{B} for an interface between two media with permittivity μ_1 and μ_2 . (No credit is given to a correct answer without any explanation or derivation.)
- (10%) (a) What is a transmission line? When should transmission line effects be considered? (b) For a lossless transmission line, λ=20.7 cm at 1 GHz, please find the relative permittivity ε_r of the insulating material.